1. Simplify the following expressions: 3 3 -3 3 6 6 a. (x y x y )/(x y ) (x x x)(x x x) b. --------------
x3 (y-3)(x-6) c. ------------ (xy)-4 d. [(xyz)
3 / (z4y2x)](z2)6 e. x2x3x4x5x6x7x-15 ((x x x x x) + (x x x x))x
f. -------------------------- (1 /(x-3))2
2 -2 g. (x(y + z)) (xyz) 2. Solve the following (or simplify)
a. M = log(283) b. M = log_10(28332) c. M = log_5(283) d. M = log_5(1415/5) e. M = log(1036
2 ) f. M = log_10(xy/z)
6x(y
2)(z-2) g. M = log_16((a/2)4) h. M = log(-------------)
Pi
3. What happens if you try to solve the following using your caculator? a. M = log_10(-2) b. M = log_10(0)
4. What are the following values when written in scientific notation? a. 1,003,000,000,000,000,000,000,000 b. (3.695)15 c. (3.695 x 1015) d. (1.38)-9 5.
Solve the following equation by simplifying x, y and z with scientific notation first: x = 0.00000000000000000008 y = 0.0000000000045 z = 10,880,200,000,000,000,000
x (y3)2 z M = [------------]2 (xy)(1/2)
6. Convert the following binary values into base 10 values: a. 1010 b. 1111 c. 0
d. 1101011010 e. 1110100011 f. 11111111111111 7. Convert the following base 10 values into base 2, binary:
a. 192 b. 1,253 c. 69
d. 85 e. 16,530 f. 16 8. Use what you have learned to: a. Similar to the binary table you use for converting between
binary and decimal, make a table for converting base 5 numbers to base 10 numbers, showing the exponent value for the first 6 places. b. convert 281, a base 10 number, to a base 5 value.
c. Convert 1341404, a base 5 number, to a base 10 number. |